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Abstract

Your favorite major retail store (online or brick and mortar) currently has the ability to forecast

demand for commodities such as toothpaste and toilet paper. They use these forecasts to make

decisions about the best quantity of goods to deliver to distribution centers and retail outlets and

when to deliver them. They minimize shipping and storage costs and avoid having too many or

too few items on hand at the point of need. Military units on today’s battlefields would benefit

greatly from a similar scheme to forecast ammunition requirements and make sound delivery

decisions. The forecasting is more difficult though, as ammunition demand is often the result of

external, unpredictable enemy decisions. Production is slow and requires long lead times. Delivery

is dangerous and unpredictable. Available data is often incomplete or seemingly irrelevant. Even

though the system that controls the need for ammunition is hidden from our direct observation

(friendly and enemy unit actions and counteractions), we can still predict future system behavior

through the analysis of time series data.

This research explores several popular forecasting methods to determine their strengths, weak-

nesses, and overall applicability to predicting ammunition demand by US Army units in Afghanistan

from 2010 to 2013. Autoregressive integrated moving average (ARIMA), Exponential Smoothing,

Hidden Markov Models, and historic average estimation models are all used to predict future

ammunition demand. The resultant forecasts may be used to feed a comprehensive logistics planning

system to help military leaders make informed decisions about commodity delivery on the battlefield

in order to decrease risk and increase reliability of logistics resupply. Results indicate that forecasting

the outputs of a system as unpredictable as war is very challenging. The univariate exponential

smoothing models forecast with the least percent error for near term forecast horizons, and their

accuracy is shown to improve with bootstrap forecast aggregation. A novel alteration to residual

bootstrap aggregation is presented that increases forecast accuracy by mitigating the large variance

for such a stochastic time series as ammunition demand. This research is relevant not only for

military sustainment planners, but for anyone who works with demand that varies over time across

several echelons of product and consumer.
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1 Introduction

“A Soldier in combat can go a year without pay; months without mail; days without

food, water, and sleep; but he cannot survive one minute without ammunition.”

(LTG Joseph M. Heiser, HELFAST XVII Conference, Fall, 1986)

Military leaders have identified a need to better estimate ammunition consumption on the modern

battlefield. This problem has been made more complicated in recent conflicts because ammunition

is often expended as a result of largely unpredictable enemy decisions and the will of the local

populace as opposed to thoroughly planned friendly unit decisions. This inherent unpredictability

coupled with high risks in overestimating or underestimating ammunition requirements makes this

an urgent problem.1 The goal of this research is to identify methods to improve the US military’s

ability to forecast ammunition consumption in complex combat scenarios through the time-series

analysis of ammunition transaction data. This research seeks to take advantage of the inherent

hierarchical structure of military units and ammunition types to increase forecast accuracy for a

commodity with such an intermittent demand. A reliable forecast will feed a comprehensive logistics

planning system to help military leaders make informed decisions about commodity delivery on the

battlefield. This will result in decreased risk and increased reliability of logistics resupply.

Currently in US Military operations in Afghanistan, units are organized by space. An Army

division may have responsibility for a region consisting of several provinces. The division’s subor-

dinate brigades (three to five brigades per division) may each have responsibility for one or more

provinces including one or more large military bases that serve as distribution hubs. Each brigade’s

subordinate battalions (three to five battalions per brigade) may have responsibility for a single

province or several districts of a province and be headquartered at a large Forward Operating Base

(FOB). The battalion, consisting of three to five subordinate companies, will have its forces stationed

at several smaller FOBs and Combat Outposts (COPs) in order to most effectively accomplish their

assigned missions (See Figure 1 and Table 1 for more information). This organization by space makes

the distribution of supplies straightforward. A sustainment unit at the division level is responsible

for distributing supplies to hubs at the subordinate brigade locations. Brigade sustainment units

distribute to battalion FOBs, and battalion sustainment units distribute to their subordinate units

1When ammunition needs are underestimated a military force may be incapable of defense in the face of an enemy
force. Overestimation may place supply convoys in unnecessarily risky situations.
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at smaller FOBs and COPs. This organized distribution scheme is not always followed exactly as

the restrictive terrain in Afghanistan makes air movement necessary for many supply distributions

and air assets are generally tasked by echelons higher than those who use their services [1]. This

organized hierarchical scheme does, however, provide a convenient and relevant framework for our

forecasting and distribution problem and so will be referenced throughout this research.

Figure 1: Afghanistan is divided into regional commands by the International Security Assistance
Force (ISAF). US responsibility is largest in Regional Command East (RC East), and area about
the size of Virginia. There are 11 provinces and the capital province of Kabul in RC East (these
provinces are shown in light blue, Kabul is the red province in the center of RC East). There are
six major Forward Operating Bases (FOBs) that serve as supply distribution hubs in RC East; they
are depicted by red dots. These large FOBs also serve as headquarters locations for the six Brigade
Combat Teams (BCTs) currently in RC East. There are hundreds of smaller FOBs and Combat
Outposts (COPs) not shown in the figure out of which US forces work to accomplish their assigned
missions.
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Table 1: Typical organization of US Army light infantry units

Rudimentary demand forecasting is conducted at most levels along the distribution chain. These

forecasts, however, tend to be very inaccurate and sometimes even unusable because they grossly

under or overestimate actual need [2]. They tend to take two common forms: a forecast based on

long-term historical data (an infantry battalion conducting offensive operations in desert terrain has

been known to consume X rounds of machine gun ammunition per day) using the OPLOG Planner2,

or a naive forecast that estimates that next period’s demand will equal the current period’s demand.

Supply requests are forwarded up from smaller units to the units with the requested material. In the

case of ammunition, most units maintain their own small storage area in order to avoid ever being

dangerously low on supply. Most ammunition requests, therefore are made in order to replenish

supplies on hand. This procedure puts lags into the system between ammunition use, ammunition

need, and ammunition delivery. The inner workings of this system are hidden to us: we don’t know

how much ammunition each unit keeps on hand, we don’t know when ammunition gets used or

how much gets used, we don’t even know when ammunition gets requested. We do know when

ammunition gets issued, what type gets issued, and how much gets issued. This information will

form the basis of a forecasting strategy to help decision makers at all levels predict more accurately

the ammunition to be delivered to subordinate units.

The next section will review relevant literature on military sustainment and demand forecasting

2The Army’s Operations Logistics (OPLOG) Planner Software tool is a digital version of resource consumption
estimation charts. It is currently used to estimate several commodities including fuel, water, and food. The ammunition
estimates, however, tend not to be acceptably accurate in current complex combat scenarios as they were designed
using data from previous, more linear conflicts.
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methods applicable to our problem. Section 3 will further describe the specific attributes of our

problem and lay out objectives necessary to overcome it. Section 4 will provide a discussion on the

available data and detail our methodology to assist planners and decision-makers to better forecast

ammunition needs. Results from our analysis will be discussed in Section 5; and Section 6 will

conclude with the contributions of our methodology and recommendations for implementation and

further research.

2 Literature Review

2.1 Military Sustainment

Much work has been done to identify ways to improve the flow of military logistics. RAND, in

particular, has completed several studies [3, 4, 5] that illustrate ways to incorporate into military

logistics methods that have already seen success in industry, such as just-in-time delivery and

distribution. These reports demonstrate the need for a reliable ammunition estimate, but do not

address how to make one. These studies also lack many of the insights gained during the Global

War on Terrorism where asymmetric warfare on a non-contiguous battlefield presents a different set

of challenges and improvised solutions to ammunition forecasting and delivery. More recently, in

his Command and General Staff College Thesis, William Freeman pointed out the overestimation

tendency of currently used military references for ammunition estimation and suggested a forecasting

framework based on more recent historical data [6].

Army Field Manuals (FMs) [7, 8, 9, 10, 11, 12, 13] and studies published by the Center for Army

Lessons Learned (CALL) provide commentary on current techniques used by Army units to estimate

ammunition consumption and efficiently deliver ammunition on a battlefield. FM 101-10-1/1 and

/2 were replaced by the OPLOG Planner Tool, but still make up its logic for forecasting. These

FMs provide data about the composition of units (how many guns and vehicles they own), and

planning factors to estimate consumption of commodities like food, fuel, and ammunition. FM

4-30.1: Munitions Distribution in the Theater of Operation details the process by which ammunition

moves through a supply chain. It acknowledges the importance of ammunition forecasts to ensure

the success of Army units, but only offers forecasting techniques for very simple and practical

problems, such as to ensure the necessary haul assets and material handling equipment are available
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for an expected ammunition delivery. It also provides details on calculating a required supply rate

for units based on their known upcoming missions based on references such as FM 101-10-1/2 and

OPLOG Planner. The manual covers detailed methods for forecasting training ammunition which

can be very accurately determined because unit size (and hence number of weapons) is known and

training tasks are planned months in advance. The largest flaw in this manual is its suggestion

that forecasting be conducted at the lowest possible level and only consolidated from there up.

This method likely results in the overestimation explained in [6], and prevents decision makers and

planners at higher unit levels from seeing an accurate forecast with a large enough time horizon to

make necessary plans. The CALL publications mention various ways to improve convoy operations

[14], patrols [15], ammunition distribution [16], and overall unit preparedness by declaring the

importance of an accurate and timely forecast of ammunition use, but provide no information on

how to make such a forecast.

These military publications provide a good contextual reference to the problem and help describe

the limits of a possible solution, but they do not offer an accurate, usable estimation procedure.

They are used in this research as guides to establish a problem solving framework that may be

actually implemented in the near future and that will solve the right problem.

2.2 Time-Series Forecasting

Myriad time series forecasting methods have been shown to improve over naive methods where a

future demand is of interest. Such methods include time series regression, moving average (MA) and

auto-regressive moving average (ARMA) models, seasonal and non-seasonal auto-regressive integrated

moving average (ARIMA) models, and generalized auto-regressive conditionally heteroskedastic

(GARCH) models [17]. Because of the seasonal effects and dynamic nature of a battlefield, this

research will focus on what we consider to be the most appropriate and adaptable methods:

Exponential Smoothing and seasonal ARIMA methods. These two methods may be adapted (by

changing parameters) to fit appropriately to any order of time-series [18].

The Exponential Smoothing method uses moving averages that are weighted exponentially, with

higher weights assigned to the more recent averages. These weighted averages provide updates to

the seasonally-adjusted mean, trend and seasonal components of the time series [19, 17, 20]. Because

it includes the effects of trend and seasonality, and its responsiveness is adjustable for different
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situations, the Exponential Smoothing model is well suited for our demand forecasting problem

[21, 22]. The method is largely attributable to the work of Holt (1957) and Winters (1960) [17].

ARIMA models are used to forecast non-stationary time series because they can capture the

correlations of a series to itself through differencing. They also integrate a moving average term.

And when they are extended to include seasonal terms they are capable of accurately modeling a

broad array of series[19]. The ARIMA methodology is due to the work of Box and Jenkins in the

1970s [17].

When ammunition demand is considered at a low level, say, at battalion level for one type

of ammunition, it forms a very intermittent time series. There are several time periods with no

transactions followed by one big transaction. This is similar to the time series of gasoline purchased

for an automobile: several days without buying gas, then one day when 20 gallons are purchased.

J. D. Croston proposed a technique to better forecast series like these in 1972 by using separate

estimates for both the size of the demand and its frequency [23]. Since then, several researchers

have sought to improve or further explain his work. Their research has shown, however, that strict

assumptions must be maintained for the technique to be effective. The demand process must be

shown to be Poisson [24] and the underlying residual process must always be non-stationary [25].

The technique is also not robust to missing data, as one missing non-zero value may greatly affect

the forecast.

2.3 State-Space and Hidden Markov Models

Other researchers have sought to better explain processes like ours, especially intermittent processes,

through state-space models which may result in more accurate forecasts than traditional time-series

analysis without completely explaining the state of the system at any given point in time [26, 27, 17].

State-space methods are worth exploring in order to make sense of a process for which we only have

reliable data for one aspect (how much ammunition changes hands) and we are left to assume the

rest (how much ammunition is actually needed, when it is needed, and why it is needed). With

additional data sources (explained later in Section 4.1.2), we may view our problem not only as

multivariate time-series, but as a system better explained by some generalized linear model. This

approach naturally leads us to state-space models where an underlying, perhaps unknown process is

responsible for generating our observed data. State-space models are also able to adapt even quicker
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than exponential smoothing methods to potential shocks to the system [17]. This responsiveness

has made state-space models popular for forecasting systems subject to sudden changes, such as the

stock market [17, 28], biological systems [29], or ecological systems [30]. State space models can

also handle missing or potentially inaccurate data [19, 30] so they should be considered as possible

suitable methods for our problem.

Hidden Markov Models (HMMs) are a type of State-Space model that can be used to describe an

underlying system that changes without our observation and according to some stochastic process.

HMMs initially gained popularity in describing the underlying system such as in handwriting or

speech recognition [31] but have been adapted to successfully forecast time series observations like

economic data [32, 33, 34, 35] and natural systems like bovine fertility [36] or volcanoes [37]. Their

wide applicability and adaptability make them a suitable candidate for our forecasting problem, but

HMMs may be limited by their assumption that the underlying process is a finite Markov process.

It may also be necessary to consider models that relax this constraint such as those that use higher

order Markov processes or semi-Markov processes [36].

2.4 Bootstrap Aggregation

Bootstrap aggregation, or bagging, may be used to improve prediction accuracy and reduce variance

for classification problems [38]. A model (often a simple or even weak classifier) is fit to several

bootstrapped samples of training data. The resultant predictions are averaged to form a bagged

prediction that is often more accurate than the prediction produced by the same model on just the

empirical training data. Bootstrapping was adopted for time-series in several different ways under

several different names, but the two most popular are block and sieve. Block bootstrapping involves

splitting a series into blocks of time (that may overlap) and sampling them with replacement to form

new series [39]. The most relevant method to our problem is sieve bootstrapping [40]. A training

series is decomposed into trend, seasonal, and residual components. The residual series is sampled

with replacement and added back to the trend and seasonal components to produce a surrogate

training series with approximately the same distribution of residuals. A forecast model then uses

several of these surrogate series to produce several forecasts. We take the average of these forecasts.

This process has been shown to be particularly helpful in series governed by comparatively large

residuals and residuals that are not distributed normally [41].
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3 Problem and Objectives

3.1 Problem Description

“During a conflict, resupply quantities must constantly be reviewed and adjusted

based on historical usage data gathered as the conflict progresses... A review of U.S.

Army involvement in recent operations clearly indicates the need to improve logistical

planning. Plans must be developed to support all levels of combat operations/ stability

and support operations. It is critical that Class V (ammunition) support planning be

detailed...” (FM 4-30.1: Munitions Distribution in the Theater of Operations, ch 4)

The math required to forecast food consumption on a FOB in Afghanistan is relatively straightforward.

We determine how many mouths there are to feed, how many days they need food, and we multiply

by three meals per day. Ammunition consumption is not only a much bigger problem;3 it is much

more complex. We don’t know why ammunition will be used on any given day in the future and

we don’t know how much it will take to get the mission done. We don’t even know how much

ammunition any unit has currently available in stocks. Our best forecast must therefore be based

on historic data that details the exchange of ammunition on the battlefield.

There are two different primary questions to answer in this problem. The tactical level question

is how much ammunition, by type, will be needed at a location by its units during an upcoming

time period (How many 5.56mm rifle rounds will the units working out of FOB Sharana need next

month)? The strategic level question is how much ammunition (by class, weight, and volume) will

we be needed in a theater of operations for a large time horizon (How many air or water shipments of

small arms ammunition will we need in Afghanistan in 2015)? The tactical level estimate will drive

decisions about ammunition allocation and distribution. The strategic level estimate will provide

guidelines to the ammunition producers, sellers or buyers, and transporters. Both estimates may rely

on different models and perhaps different data sources to increase their accuracy. There may also

be a need for intermediate estimates. For example, the battalion supply sergeant at a FOB needs to

know how much ammunition his battalion needs in the coming months, the brigade supply team

needs to know for the entire FOB, the division supply team needs to know how much ammunition is

needed at 20 different FOBs and needs to know with enough time to make a distribution plan, etc.

3Ammunition accounted for over 73% of daily sustainment requirements by weight during Operation Desert Storm
[2].
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So forecasts are needed at several different echelons and may be needed for different time horizons

(See Figure 2).

Similarly, our problem may be organized by a hierarchy of ammunition types. At the lowest

level we have individual ammunition calibers. They may be aggregated by a hierarchy of types

(See Figure 3). In this research we will consider this hierarchical approach because our data set is

appropriately tagged with this information but not with the unit hierarchy information. We will

consider a two-level hierarchy with three types of machine gun ammunition (.50 caliber, 5.56mm,

and 7.62mm) at the lowest level and the sum of all machine gun ammunition at the highest level

[42].

Country

Region Region

Hub Hub

FOB FOB

Brigade Brigade

Battalion Battalion

Company Company

Figure 2: Hierarchy of Army Units by Space
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AllAmmunition

Air Ground

SmallArms Artillery

Rifle P istol

.45cal 9mm

Figure 3: Ammunition Organized by Type

3.2 Problem Statement

We formally define the forecasting problem at the tactical level to estimate Ni(m, t), the quantity of

ammunition type i required by military unit m during time period t. At any particular FOB, f , in

the set of all FOBS, F , where the set of all the units at FOB f are denoted by mf , the quantity of

interest is:

Nift = Ni(mf , t) =
∑

m∈f

Ni(m, t)

The strategic level problem is similar in structure, but is only relevant when it includes all FOBs, F :

Nit = Ni(mF , t) =
∑

f∈F

∑

m∈f

Ni(m, t) =
∑

m∈F

Ni(m, t)

Similarly, we particularly seek to forecast for a group of ammunition types, say all machine gun

ammunition G, which is a subset of all ammunition I:

NGt =
∑

i∈G

Ni(mF , t)
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3.3 Objectives

The ideal solution to our problem will provide users at all levels of war with relevant, accurate

forecasts of ammunition use. Strategic planners will be able to forecast ammunition requirements

over a long time horizon for a large aggregation of units. Tactical decision makers will seek shorter

term, more accurate forecasts for just the units for which they are responsible. In order to achieve

this end state, we must properly organize the available data and then determine which methods (of

those mentioned above) make the best estimates for the different forecasting problems.

Given the current set of available data, much of which has already been aggregated at different

levels or time periods, and the different echelons at which an estimate is desired (strategic or

tactical), there is clearly a need to organize our data. This organization must take place prior to

any forecasting in order to ensure we use the most relevant data for each estimate.

Of the possible hierarchical schemes we use to build predictive models, some will perform better

than others under certain conditions. This research identifies which models are better at making a

tactical level estimate and which ones are better for strategic plans. Some models will work better

than others for different aggregations of ammunition type and for different forecast horizons.

4 Data and Methodology

4.1 Data

4.1.1 Ammunition Transaction Data

We have 39 months of ammunition transaction records from US Army units in Afghanistan. From

January 2010 through March 2013 there were over 800,000 ammunition transactions recorded in the

form: “On date D, supply unit W issued X rounds of ammunition of type Y to unit Z.” The data

came from the Army’s Conventional Ammunition Packaging and Unit Load Data Index (CAPULDI)

Standard Army Ammunition System (SAAS)4[43].

When considering a particular unit or ammunition type, this data set is sparse. For example, of

the 125 units operating around Jalalabad, 41 units made only one or two ammunition draws over a

one year period. This sparseness indicates the intermittent nature of the time series and illustrates

4Here forth referred to simply as “SAAS data.”
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the difference between ammunition consumption and ammunition transactions. Our data tells us

when a unit received more ammunition; we are still unclear about how much ammunition the unit

has on hand or has used since the last transaction. These shortfalls prevent us from using the SAAS

data to answer the question: Why is ammunition being used? This question is at the heart of our

quest to predict how much ammunition will be required in the future. In order to gain a clearer

picture we may need other data.

The SAAS data may still be used to forecast future ammunition demand by making time series

of previous demands. In order to remove the intermittent nature of the series we aggregated the

demand at country level and looked only at ammunition with a large, regular demand: machine

gun ammunition. Machine gun ammunition is a perfect candidate for time series analysis because it

it is drawn relatively frequently compared to other ammunition types; it is drawn by a wide variety

of units (as opposed to artillery which is drawn almost exclusively by artillery units); and it is used

in a wide variety of conflict types. It is intuitive that machine gun ammunition should most closely

indicate the actual tempo of battle for these reasons.

Our SAAS data set is missing transactions records for April, May, and June of 2011. In order to

examine the seasonality of ammunition demand we needed a series of at least two years length, so it

was necessary to fill in these three months with appropriate estimates of demand. We used linear

interpolation at both weekly and monthly levels to estimate the values assuming a yearly seasonal

period. Simply put, we used an average of April 2010 and April 2012 values to estimate April 2011

values. This allowed us to maintain a realistic variance in the data. We confirmed this variance

by examining the autocorrelation of the squared residuals; they indicated no heteroskedasticity

conditional on time attributable to our interpolations.
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Figure 4: Decomposed time series of .50 caliber ammunition demand.

Next we attempted to organize the SAAS data by unit type and size. Of the approximately

76,000 machine gun ammunition transactions, we were able to identify the size and type of the

receiving unit on about 15,000 transactions, or nearly 20%. This was enough to establish mean

demand amounts per generic unit types, but not enough information to conduct time series analysis

on the data by unit type.

The time series of each ammunition type are non-stationary processes with trend and seasonal

components. The seasonality of the series are different for different ammunition types and are

sometimes negligible. The residuals of each series are very close to normally distributed and show

little or no autocorrelation; they can therefore be modeled as stationary residuals for our forecast

methods. Augmented Dickey-Fuller tests on each series support this by significantly rejecting the

hypothesis that any series is characterized by a unit root. See Figure 4 for the decomposed series of

.50 caliber ammunition demand. Note the large range of the residual series (5.7 million) compared

to the trend (1.2 million), seasonal component (1.7 million), and the total series (4.1 million). This

comparatively large residual series is common to all the series in this research and helps explain the

relatively high errors achieved by even our best forecasts.
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4.1.2 Auxiliary Data

Other helpful historical data includes how many troops were in Afghanistan at any given time, how

units were organized (who worked for whom, and unit makeup), and what significant activities

(SIGACTS) occurred on the battlefield. We can use each of these data sources to help describe the

workings of the entire system at each snapshot in time. They provide additional attributes to each

ammunition transaction instance and potentially allow for more accurate predictions. Afghanistan

troop levels [44], including US Forces, Afghan Security Forces, and other Foreign troops, provide a

country-wide indicator of total monthly activity. Unit task organization (TASKORG) is available

through “Order of Battle” documents [45] that describe which units worked together and where they

worked on the battlefield. This monthly data can be used to hierarchically organize ammunition

transactions by unit location, and serves as the input data necessary to make forecasts using OPLOG

Planner. SIGACT data [46], even though it has been aggregated over space5 and time, is still

capable of helping to describe the causes of ammunition consumption and the effects of plans and

battlefield conditions. This data can provide the link between battlefield conditions (like time of

year and troop levels) to actual ammunition consumption. While it will be difficult to accurately

predict future SIGACTs, the relationships we learn about conditions, SIGACTs, and ammunition

transactions can be expected to continue to future time periods.

4.2 Methodology

4.2.1 Data Organization

The data lend themselves to aggregation by ammunition type, echelon of Army unit, or even time.

By adding attributes to data entries that reflect their place in a hierarchy instead of merely summing

their values, we can better describe the characteristics of the data at different levels. This allows

us to create separate data matrices for each hierarchy level (as advocated by [47]) and still affords

us the opportunity to test other organization schemes without creating a new data set. It also

allows us to later create models with three different hierarchical schemes: disaggregated models that

5Aggregation over space, for example, by province in Afghanistan, is akin to unit aggregation. Military units are
often responsible for a designated space and subordinate units have smaller divisions of the space. It is therefore
acceptable to equate the aggregation of units (several battalions lumped into one Brigade Task Force) with the
aggregation of space (several districts lumped into one province). This concept will appear throughout the methodology
portion of this proposal.
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forecast based on the individual attributes, a pooled model that forecasts based on a summed total

of the attributes, and an intermediate model which uses the all the labeled individual attributes

at once.6 It will then be necessary to experiment with different hierarchical organization schemes.

For example, we may split our attributes into four levels: unit, FOB, Province, and Country (See

Figure 2 for another possible (more complete) breakdown of the unit-based hierarchy). We will build

forecast models with these different schemes and compare their results. Organization by space/unit

will be akin to a producer of one product estimating demand over several geographic or demographic

markets. We could also base the hierarchy on ammunition types (See Figure 3) or on a combination

of unit and ammunition types. Organization by ammunition type will be more similar to the way

production companies estimate sales for several products that can be organized by type, brand, etc.

Due to the sparse nature of the SAAS data, it is necessary to aggregate the data by time. As

mentioned previously, many units drew ammunition only once or twice a year. Using a day as our

time unit results in a data set that is too intermittent to forecast accurately. We may aggregate

transactions at the week or month level to provide a more full data set that can now be used to

predict in units of weeks or months ahead (as opposed to days). We experiment with different time

based aggregations of the data in order to determine the scheme that provides the most accurate

forecasts.

4.2.2 Forecasting

Once the data are properly organized and we examine the trends, variances, and correlations of the

variables, we are poised to make forecasts. For each forecast task, we consider three main methods

and three control methods. ARIMA models, Exponential Smoothing models, and Hidden Markov

Models are compared to naive forecast methods.

4.2.2.1 Naive Methods In order to properly determine the effectiveness of the below forecasting

methods, we compare their results to simple methods currently in use. First, we form a naive

forecast that assumes next time period will incur the same ammunition demand as the time period

6For example, machine gun ammunition is composed of three different calibers. If we seek to forecast the total
amount of machine gun ammunition required, we would make three separate dissagregated models and sum their
results(one for each caliber), one pooled model will take as inputs the sums of each of the caliber amounts, and the
intermediate model will take three inputs per time period- one for each caliber. The disaggregated and pooled models
ignore the inherent covariance structure of the three calibers while the intermediate model uses this information to
potentially increase forecast accuracy.
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that precedes it. Extensions to this method include a yearly naive forecast that assumes next time

period will incur the same ammunition demand as the same time period last year, and a naive

forecast that also includes random drift.

We also use the OPLOG Planner to produce an estimate based on the units expected to be

in theater and their assigned missions. Using a similar construct as OPLOG planner, we make

estimates based on the average usage rates from the current data set; these are referred to as generic

unit estimates.

4.2.2.2 Time Series The exponential smoothing approach provides a forecast at any level in

our unit or ammunition hierarchy with the following three equations:

at = α(Nift − st−p) + (1− α)(at−1 + bt−1)

bt = β(at − at−1) + (1− β)bt−1

st = γ(Nift − at) + (1− γ)st−p

where at, bt, and st are the estimated mean, slope, and seasonal effect at time t, respectively, and α,

β, and γ are our smoothing parameters. We make forecasts of ammunition consumption for each

type of ammunition over several different time horizons. We make aggregated forecasts at applicable

echelons based on ammunition type or unit location. We then investigate how the accuracy and

robustness of our forecasts change as we adjust the amount of past data used as training inputs

(and as we adjust the α parameter). This helps determine the “freshness” required of our data in

order to produce an acceptable forecast. We also use a multivariate approach of the same method.

The seasonal ARIMA process is given by:

Φ(Bm)φ(B)(1−Bm)D(1−B)dyt = c+Θ(Bm)θ(B)εt

where {εt} is a white noise process with zero mean and σ2 variance, B is the backshift operator, φ()

and θ() are polynomials of order p (autoregressive order) and q (moving average order), respectively.

Φ() and Θ() are polynomials of order P (seasonal autoregressive order) and Q (seasonal moving

average order), respectively. d and D are the non-seasonal and seasonal difference orders, respectively.

m is the seasonal frequency. We select the order terms by examining the AIC of models fit under

different orders and choosing the parameters of the model with the lowest AIC[18].
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4.2.2.3 State-Space and Hidden Markov Models The above exponential smoothing frame-

work may not adapt quickly enough to some of the societal changes we expect to be important in

our data. A natural next approach would be a generalized linear model with coefficients that change

over time. A multivariate autoregressive state space model can approximate such an approach where

the process (as depicted in Figure 5) is modeled by:

Xt = BXt−1 +wt

Where Xt is a vector of state values at time t, B is a transition matrix that describes how states

change over time, and wt is a multivariate error term that is distributed normally with mean zero

and variance covariance Q. The observations of the model are modeled by:

Nt = ZXt−1 + vt

Where Nt is a vector of observations, Z is an emission matrix that describes how states produce

observations, and vt is a multivariate error term that is distributed normally with mean zero and

variance covariance R.

The two above equations form the base of a recursive process in which we smooth, filter, predict,

and forecast in order to estimate future observations. Smoothing gives us the best estimate of past

states given past observations. Filtering makes the best estimate of the current state given past and

current observations, prediction estimates future values of the state, and we forecast to estimate

future observations based on future state values.

From the above state-space approach, if we then assume that the underlying system can take

only a finite number of states 7 and transitions to those states can be assumed stochastic and

memoryless, we can then use a hidden Markov model to describe the system and make inferences

about the observed outcomes.8 Under this approach, we seek to identify the state at a particular

time period (Xt) in order to estimate the quantity of ammunition that will change hands in that

time period (Nit), as depicted in Figure 6).

7For example, each ammunition consuming unit may take only two states: the unit needs more ammunition, or it
does not. We will experiment with several different numbers of states in order to find a model that works best for each
level of the system- maybe a two state model at the battalion level and a model with more states at the Country level.

8The auxiliary data sources such as number of troops present in country or number of monthly insurgent-initiated
attacks may seem like inputs to the system while the actual ammunition transactions are outputs. It is a trivial
change to our thinking about this system that makes all data sources outputs of the underlying system (war); so we
will model all these data as a multivariate set of observed outcomes [48]. The rest of this section will display only the
univariate case for clarity.
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State : X0
// X1

//

��

X2
//

��

... // Xt
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��

...

Observation : Ni1 Ni2
... Nit

...

Figure 5: State Space Model Diagram

HiddenState : X0
// X1

//

��

X2
//

��

... // Xt
//

��

...

Observation : Ni1 Ni2
... Nit

...

Figure 6: Hidden Markov Model Diagram

The parameters of the model include the number of possible states (S), the transition probabilities

to and from these states (A), the probabilities of observations given the current state (B), and

the initial probability distribution of states (π). We will denote all these parameters by λ. After

selecting initial model parameters, we seek to identify the most likely sequence of states given

the observations up to time t: P (X0 : Xt|λ,Ni1...Nit). Then we will use a variation of the EM

algorithm to recursively improve our estimates of the state sequence and the model parameters

in order to better match the sequence of observations. After finding the best model parameters

(λ), and most likely state sequence (X0 : Xt), we can then estimate the next state (Xt+1), and

forecast the next observation (Nit+1), or set of observations in the multivariate case, by maximizing

P (Nit+1|λ,X0 : Xt+1). In a multivariate model where we have observations for some variables and

not for others in a future time period, 9 we can use the same model framework to make a prediction

using this additional information by maximizing

P (Nit+1|λ,X0 : Xt+1, Pt+1)

9For example, we know how many troops will be in Afghanistan next month but don’t know how much ammunition
they will consume.
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where Pt+1 represents a vector of the observations of auxiliary variables at time t+ 1 and the model

parameters (λ), and the previous state sequence (X0 : Xt), were estimated using the previously

mentioned recursive algorithm on multivariate time series data as opposed to just the univariate

data.

4.2.2.4 Forecast Improvement From the above methods, we choose the best performers as

candidates for potential improvement by bootstrap aggregation, or bagging. Here we make a number

of similar forecasts from different time series created by sampling the residuals of the original series.

We take the average of these forecasts. The prediction intervals of the forecasts may also be averaged

as long as they are calculated similarly. All of our models calculate the prediction intervals assuming

a normal distribution of error, so they may be averaged just as the point forecasts are.

4.2.3 Evaluation

Forecast models are compared to one another based on their respective mean absolute percentage

errors (MAPE) on several different forecasting tasks and training data sets. First, we use monthly

series, then weekly. Models are tested with just univariate data (only the SAAS data), as well

as with multivariate “input” data such as US troops levels and the number of insurgent initiated

attacks. Models that perform well with fewer inputs will be preferred over those with more inputs

because data dissemination is a difficult and often error-inducing task on the battlefield. The SAAS

data may be disaggregated by ammunition type (the number of total machine gun rounds can be

split into the number of 5.56mm rounds, 7.62mm rounds, and .50 caliber rounds).

Methods are tested with pooled data (all machine gun rounds in all of Afghanistan) and

disaggregated data (we will consider the sum of forecasts for each caliber of machine gun round).

Models are also be tested at different forecast horizons: from one to 12 months ahead and from one

to 12 weeks ahead. After all this model comparison, we are able to assign the best model (of those

tested) for any particular scenario. Our comprehensive forecasting engine will choose the correct

model based on the parameters of the question. For example, when decision makers need a forecast

for a small unit (battalion) over a small time horizon (one month), the engine uses one particular

model to forecast; when another decision maker needs a forecast for a larger unit (division) over a
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longer time horizon (six months), the engine uses a different, more accurate model to generate the

forecast.

Initial forecast results were high in error because predicting the amount of ammunition demanded

in a particular week is a tough task. We considered that this task may be less relevant that predicting

the aggregate demand over two weeks. For example we may still make weekly forecasts, but we

calculate our error by comparing the sum of our one and two-week ahead forecasts with the sum of

the actual demand for one and two weeks ahead. This should allow for military planners to see

more relevant error statistics and aid in their decisions for model selection.

5 Analysis

5.1 Data Analysis

After an initial cleaning and organizing, we determined several things about our data that helped

shape our analysis. First off, the individual time series are intermittent or lumpy. Just as in most

combat related data sets, 10 ammunition transactions are few and far between when viewed at the

unit level. They are often large as well. It is interesting to note that the smaller transactions (one

type of ammunition, say, as opposed to 10 different types) may very well be the most descriptive

and the closest in time to actual needs, whereas the larger transactions are presumably more

routine. This, combined with the lack of unit information in the data set, confirms our decision

to aggregate data over several units. Individual ammunition types exhibit normal distributions of

issued quantities and their aggregates look like the sum of these normal distributions. The residual

and error terms associated with our models also exhibit normal distributions. By decomposing the

SAAS data time series we revealed a high correlation (.73) between the trend component and the

US troop levels time series. This is intuitive but encouraging because the troop level data may

prove a useful series for the multivariate methods.

10War is often described as hours and days and weeks of boredom interrupted by seconds and minutes of unbridled
chaos.
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5.2 Forecasts

For an initial test of the forecasting methods, we made a monthly time series of transactions of

machine gun (MG) ammunition aggregated at the country level. We chose machine gun ammunition

(composed of three different calibers and 12 different individual types) because it was drawn by

virtually all units throughout the 39 month period, and it was drawn relatively frequently. This

frequency is a result of the wide application of machine guns in combat- their use is applicable to a

wide array of conflicts and so is closely related to the overall combat intensity in an area or over a

time period. Multivariate models also used monthly counts of US troop levels in Afghanistan and

monthly counts of insurgent initiated attacks. Forecasts were made at various time horizons from

one month to one year in the future. The results of these initial forecasts are depicted in Table 2

and the individual models and their results are explained further in Appendix 1. The Naive method

(which assumes next month’s demand will equal the previous month) and exponential smoothing

performed the best at forecasts made one or three months out. A three-state univariate hidden

Markov model performed the best at six months out and beyond. These initial results demonstrate

the necessity of the methodology we have outlined that tests each method with several different

types of data and model parameters.

Table 2: Mean Absolute Percentage Error for the best monthly forecasting models. Models made
monthly forecasts for the quantity of machine gun ammunition demanded in the entire country
of Afghanistan. Lower percentages indicate lower error. Errors over 100% indicate that a model
tended to overestimate by at least a factor of two.

Next we created weekly time series of the four machine gun ammunition types (.50 caliber,

5.56mm, 7.62mm, and all three combined). The Naive models again performed fairly well. The

multivariate models always performed worse than their univariate counterparts and will no longer be

considered in this research. Their poor performance is most likely due to the monthly aggregation

of the auxiliary data sets. Although it makes sense that the other data sources, such as troop levels
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and attack counts, should only aid a model in forecasting ammunition demand, all the multivariate

models suffered when more information was added. This also may have to do with the non-intuitive

orders of demand and attacks. Sometimes high levels of enemy activity are preceded by large

ammunition demand, sometimes they are followed by it. The remaining contending models are the

univariate HMM (with 3 states), ARIMA, and exponential smoothing methods. They performed

reasonably well and the HMMs were sometimes able to beat the naive forecasts. When we bagged the

ARIMA and ES models, however, their performance improved, but generally not enough to beat the

naive method.11 Bagging was performed both with and without replacement of the residuals. The

bagging without replacement tended to perform better, but not significantly so. We experimented

with Croston’s forecasting method and found it unsuitable for our data due to the level at which we

aggregated the series.12 We will therefore no longer consider any intermittent forecasting strategies

for our research. See Table 3 for a summary of results on the actual .50 caliber data.

Table 3: Mean Absolute Percentage Error and 95% confidence intervals for forecasting models on
the .50 caliber time series. Models made weekly forecasts for the quantity of ammunition demanded
in the entire country of Afghanistan. Lower percentages indicate lower error.

See Table 4 for the improvements gained by bagging the time series forecast methods on all

series. Bagging tended to improve forecasts, but not in a statistically significant manner. We then

11We also experimented with bagging the naive and hidden Markov models- bagging only degraded their performance.
12Most of our series are composed of intermittent series, which, when aggregated, form non-intermittent series.
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Table 4: Mean Absolute Percentage Error and 95% confidence intervals for forecasting models on
all machine gun series. Models made weekly forecasts for the quantity of machine gun ammunition
demanded in the entire country of Afghanistan. Bagged models tended to improve performance
over their respective base models, although not significantly so.

experimented with alternate bagging methods. We noticed of the 100 bagged forecasts, oftentimes

half would be close to the actual demand and the other half would be very far off. We determined

this was due to the comparative size of the residuals to the entire series. When we just sampled a

fraction of the residual (one half, one tenth, or one hundredth) and added this to the original series

to form a surrogate, the bagged forecast improved. It improved most with the one tenth residual

method. by adding a fraction of the residual, however, we noticed that our prediction intervals were

no longer accurate. This is because the bagged forecasts did not follow the original distribution of

the residuals and instead followed a tighter distribution. This calls for a simple adjustment to the

intervals based on the fraction used of the residual to make the surrogate series. Using a paired t-test,

we compared the MAPE values for the bagged and unbagged ARIMA and exponential smoothing

models. The improvement gained by the one tenth bagging procedure was statistically significant at
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the 95% level for both methods, over all four data sets, and for all forecast horizons up to 12 weeks

in the future. There was one exception: the 2 week ahead forecasts made on the .50 caliber series

by the ARIMA models were not statistically significantly improved by the bagging procedure. The

remainder of results listed as bagged are one-tenth fractional residual bagging results. Although

the bagging procedure is demonstrated to improve forecast accuracy in a statistically significant

manner, the improvements are slight compared to the additional computational requirements. It

takes 100 times longer to form a bagged forecast (one based on 100 realizations of the series with

bootstrapped residuals), that only slightly increases forecast performance.

Because of the large confidence intervals shown in Tables 3 and 4, we decided to create 100

surrogate data sets for each time series by bootstrapping the residuals after a season and trend

decomposition. The resulting errors tend to be greater than those actually realized on the real data,

but provide much more information about how well bagging works and which methods will prove to

be more robust to such seemingly random data. Table 5 shows these errors and demonstrates the

forecast improvement of the one tenth bagging method for all methods and time horizons. Table

6 displays the errors over two-week periods, as mentioned in Section 4.2.3. The hidden Markov

models’ good performance on actual data (Table 3) and poor performance on surrogate data (Table

5) demonstrate its lack of robustness to data high in residual error. The ARIMA and ES models

were more robust; see Table 7 for the typical parameters of the time series models (typical over the

6500 models made for each series: 100 surrogate series and 65 different training sets from 104 to 169

weeks long). We also considered a bottom-up tally for the combined series to see which method was

more accurate for forecasting the higher level series, keeping in mind that the bottom-up forecasts

generally take three times the time with the same computing power. The bottom-up forecasts did

not improve over the pooled forecasts. Results are shown in Appendix 2.

Next we compared the generic unit estimates based on average values of our Afghanistan data set

to the results generated by OPLOG Planner. We used the Order of Battle document[45] to provide

the input data of number and type of units for both methods. Both methods tended to greatly

underestimate the ammunition demand, but our method based on more recent data outperformed

OPLOG planner. See Table 8 for results and Appendix 2 for complete weekly estimates. Although

we did not create a suitable replacement for OPLOG planner (because of the still relatively high

error), we did justify the use of a forecast method based on recent data like ARIMA or exponential
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smoothing over an historic average estimate when data is available. A system like OPLOG Planner

still has a place where there is no recent and relevant historical data.

6 Research Contributions and Recommendations

The current methods in use proved to be effective for their simplicity and robustness. Improvements

can be made to OPLOG planner and naive methods, however, by using recent time-series data to

forecast demand. These forecasts can be further improved by techniques like bagging. And bagging

itself may be improved, at least for series like these with comparatively large residuals, by fractional

residual bagging. The bagging procedure, while a fine contribution in its own right to the overall

forecasting problem, is not suggested for use by Army units on individual workstations to produce

weekly forecasts because it is so computationally intensive. It may be implemented successfully,

however, on a cloud-based infrastructure where more processing power may be brought to bear

on the forecasting algorithms from a remote source. The bagged exponential smoothing forecasts

are best for strategic level forecasts made in the near future, while naive methods are best for the

tactical level forecasts. Forecasts made far into the future or for scenarios with little or no relevant

data should be made using naive methods that use historical averages to estimate future demand.

We have identified the best time series methods for this particular problem and demonstrated the

accuracy improvement potential of ensemble forecasts. We have also outlined a possible framework

through which to use these forecasts to drive distribution and delivery decisions.

The methodology of this research will also serve as a contribution to the field of forecasting

in a dynamic, hierarchical environment. By examining the different needs of decision-makers in a

system, future researchers can use a method similar to this research to organize their best models

by the questions they answer. This organization will offer the best answers for specific questions,

rather than trying to fit a single, complicated (and perhaps uninterpretable) model that may poorly

answer most questions. The result will be accessible and understandable forecasts that feed other

planning systems to help leaders make better decisions about commodity demand and delivery on

the battlefield in order to decrease risk and increase reliability of logistics resupply.

At the conclusion of this research, several recommendations are presented to military planners

and other interested parties. First, while the OPLOG Planner proved unsuitable to provide specific,
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relevant ammunition demand forecasts, its methodology of historic averages should be maintained

for use in a new environment where no recent and relevant data is available. It should also be

updated to include ammunition transaction information from recent conflicts. Once an operation is

established, the naive method will provide decent forecasts until there is enough data to use the

above mentioned time-series methods- particularly exponential smoothing. Time series methods

will produce the best forecasts because they exploit the autoregressive nature of demand series.

Second, the Naive method is a suitable alternative when a unit lacks the capability to make more

advanced forecasts. The naive method will be particularly applicable for host-nation units who need

a system of estimation even if it is rudimentary. For example the Afghan National Police (ANP)

and Army (ANA) are just beginning to understand the importance of logistics on the battlefield.

They also lack the resources to make accurate forecasts. The naive method is easy for US advisers

to explain, easy to understand, requires no sophisticated software, and works fairly well. In this

case, the naive method would be the first choice for a forecast. Third, in order to make better

forecasts in the future, data collection and organization systems should be modified. Unit data (size

and type) should be captured more reliably. The SAAS system should prevent a single bullet from

being logged more than once as being issued from the same supplier. It may be issued twice, but

the second time it must be issued from the receiver of the first transaction. Currently, multiple

transactions of the same bullets are recorded as multiple transactions from the same supplier- this

creates confusion in the actual demand amounts over time. If the transactions were geo-referenced,

another set of tools in the spatial analysis family could be brought to bear on this problem.

Finally, we have a few recommendations for future research. With additional auxiliary data

(or the same data interpolated to include different weekly values), the multivariate methods may

perform better than they did in this research and should be explored further. The hierarchical

structure of our SAAS data was not fully exploited because of lack of information on the units

receiving ammunition. With this additional information, forecast accuracy has the potential for

improvement and implementation of the forecasts can be made more useful for units at various

echelons in the unit hierarchy, particularly with intermediate models as mentioned previously. Also,

an effort should be made to identify the on-hand amounts of ammunition at units. This information

will help to better model the actual demand of ammunition use as opposed to the demand to replace

stores of ammunition. Alternatively, information should be collected on actual ammunition use
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and then linked to events. We already have sophisticated and accurate methods to predict enemy

activity. These existing methods, with the right auxiliary data, have the potential to produce

accurate ammunition demand forecasts.
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Table 5: Mean Absolute Percentage Error and 95% confidence intervals for forecasting models on
100 simulated surrogate series. Models made weekly forecasts for the quantity of machine gun
ammunition demanded in the entire country of Afghanistan. Bagged models improved performance
over their respective base models, and did so in a statistically significant manner.
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Table 6: Mean Absolute Percentage Error and 95% confidence intervals for forecasting models on
100 simulated surrogate series. Models made weekly forecasts for the quantity of machine gun
ammunition demanded in the entire country of Afghanistan and error was calculated in 2-week
periods.
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Table 7: Typical Parameter values of time series models by series.

Table 8: Mean Absolute Percentage Error for unit based estimation models on all machine gun
series. Models made weekly estimates for the quantity of machine gun ammunition demanded in the
entire country of Afghanistan based on expected units present reported in order of battle documents.
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Appendix 1: Results of Monthly Analysis

Table 1: Forecast results of Naive methods
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Table 2: Forecast results of Exponential Smoothing methods
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Table 3: Forecast results of Hidden Markov Models
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Appendix 2: Results of Weekly Analysis

Table 1: Mean Absolute Percentage Error and 95% confidence intervals for forecasting models on
100 simulated surrogate series. Models made weekly forecasts for the quantity of machine gun
ammunition demanded in the entire country of Afghanistan. Bottom-up models used the sum of
forecasts on the constituent (.50 caliber, 5.56mm, and 7.62mm) series.
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Table 2: Mean Absolute Percentage Error and 95% confidence intervals for forecasting models on
100 simulated surrogate series. Models made weekly forecasts for the quantity of machine gun
ammunition demanded in the entire country of Afghanistan. Bottom-up models used the sum of
forecasts on the constituent (.50 caliber, 5.56mm, and 7.62mm) series and error was calculated in
2-week periods.
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Table 3: Results of the Generic Unit estimator for weeks 106 to 170.
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Table 4: Results of the OPLOG Planner estimator for weeks 106 to 170..


